Article ID Journal Published Year Pages File Type
4623107 Journal of Mathematical Analysis and Applications 2007 21 Pages PDF
Abstract

In this paper, the Glazman–Krein–Naimark theory for a class of discrete Hamiltonian systems is developed. A minimal and a maximal operators, GKN-sets, and a boundary space for the system are introduced. Algebraic characterizations of the domains of self-adjoint extensions of the minimal operator are given. A close relationship between the domains of self-adjoint extensions and the GKN-sets is established. It is shown that there exist one-to-one correspondences among the set of all the self-adjoint extensions, the set of all the d-dimensional Lagrangian subspaces of the boundary space, and the set of all the complete Lagrangian subspaces of the boundary space.

Related Topics
Physical Sciences and Engineering Mathematics Analysis