Article ID Journal Published Year Pages File Type
4623126 Journal of Mathematical Analysis and Applications 2007 23 Pages PDF
Abstract

It is proven that a class of the generalized Riemann problem for quasilinear hyperbolic systems of conservation laws with the uniform damping term admits a unique global piecewise C1 solution u=u(t,x) containing only n shock waves with small amplitude on t⩾0 and this solution possesses a global structure similar to that of the similarity solution of the corresponding homogeneous Riemann problem. As an application of our result, we prove the existence of global shock solutions, piecewise continuous and piecewise smooth solution with shock discontinuities, of the flow equations of a model class of fluids with viscosity induced by fading memory with a single jump initial data. We also give an example to show that the uniform damping mechanism is not strong enough to prevent the formation of shock waves.

Related Topics
Physical Sciences and Engineering Mathematics Analysis