Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4623221 | Journal of Mathematical Analysis and Applications | 2007 | 13 Pages |
Abstract
By Karamata regular varying theory, a perturbed argument and constructing comparison functions, we show the exact asymptotic behaviour of the unique solution near the boundary to a singular Dirichlet problem −Δu=b(x)g(u)+λf(u), u>0, x∈Ω, u|∂Ω=0, which is independent on λf(u), and we also show the existence and uniqueness of solutions to the problem, where Ω is a bounded domain with smooth boundary in RN, λ>0, g∈C1((0,∞),(0,∞)) and there exists γ>1 such that , ∀ξ>0, , the function is decreasing on (0,∞) for some s0>0, and b is nonnegative nontrivial on Ω, which may be vanishing on the boundary.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis