Article ID Journal Published Year Pages File Type
4623245 Journal of Mathematical Analysis and Applications 2006 16 Pages PDF
Abstract

In this paper, we prove that every solution of the first order nonlinear neutral differential equation[x(t)−px(t−τ)]′+q(t)∏j=1m|x(t−σj)|βjsign[x(t−σ1)]=0,t⩾t0, oscillates if and only if∫t0∞q(s)exp[τ−1lnp(∑j=1mβj−1)s]ds=∞, when (∑j=1mβj−1)lnp<0, and∫t0∞q(s)ds=∞, when (∑j=1mβj−1)lnp>0, where p  , τ>0τ>0, βj>0βj>0, σj⩾0σj⩾0, j=1,2,…,mj=1,2,…,m, q∈C([t0,∞),[0,∞))q∈C([t0,∞),[0,∞)).

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,