Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4623258 | Journal of Mathematical Analysis and Applications | 2006 | 12 Pages |
Abstract
According to the Morse–Sard theorem, any sufficiently smooth function on a Euclidean space remains constant along any arc of critical points. We prove here a theorem of Morse–Sard type suitable as a tool in variational analysis: we broaden the definition of a critical point to the standard notion in nonsmooth optimization, while we restrict the functions under consideration to be semialgebraic or subanalytic. We make no assumption of subdifferential regularity. Łojasiewicz-type inequalities for nonsmooth functions follow quickly from tools of the kind we develop, leading to convergence theory for subgradient dynamical systems.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis