Article ID Journal Published Year Pages File Type
4623291 Journal of Mathematical Analysis and Applications 2007 13 Pages PDF
Abstract

We study the Cauchy problem of the Ostrovsky equation , with βγ<0. By establishing a bilinear estimate on the anisotropic Bourgain space Xs,ω,b, we prove that the Cauchy problem of this equation is locally well-posed in the anisotropic Sobolev space H(s,ω)(R) for any and some . Using this result and conservation laws of this equation, we also prove that the Cauchy problem of this equation is globally well-posed in H(s,ω)(R) for s⩾0.

Related Topics
Physical Sciences and Engineering Mathematics Analysis