Article ID Journal Published Year Pages File Type
4623299 Journal of Mathematical Analysis and Applications 2007 17 Pages PDF
Abstract

The purpose of this paper is twofold. First, we present the existence theorem of an optimal trajectory in a nonconvex variational problem with recursive integral functionals by employing the norm-topology of a weighted Sobolev space. We show the continuity of the integral functional and the compactness of the set of admissible trajectories. Second, we show that a recursive integrand is represented by a normal integrand under the conditions guaranteeing the existence of optimal trajectories. We also demonstrate that if the recursive integrand satisfies the convexity conditions, then the normal integrand is a convex function. These results are achieved by the application of the representation theorem in Lp-spaces.

Related Topics
Physical Sciences and Engineering Mathematics Analysis