Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4623320 | Journal of Mathematical Analysis and Applications | 2007 | 10 Pages |
Abstract
It is proved that the operator Lie algebra ε(T,T∗) generated by a bounded linear operator T on Hilbert space H is finite-dimensional if and only if T=N+Q, N is a normal operator, [N,Q]=0, and dimA(Q,Q∗)<+∞, where ε(T,T∗) denotes the smallest Lie algebra containing T,T∗, and A(Q,Q∗) denotes the associative subalgebra of B(H) generated by Q,Q∗. Moreover, we also give a sufficient and necessary condition for operators to generate finite-dimensional semi-simple Lie algebras. Finally, we prove that if ε(T,T∗) is an ad-compact E-solvable Lie algebra, then T is a normal operator.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis