Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4623328 | Journal of Mathematical Analysis and Applications | 2007 | 21 Pages |
Abstract
We present new types of regularity for nonlinear generalized functions, based on the notion of regular growth with respect to the regularizing parameter of the Colombeau simplified model. This generalizes the notion of G∞-regularity introduced by M. Oberguggenberger. A key point is that these regularities can be characterized, for compactly supported generalized functions, by a property of their Fourier transform. This opens the door to microanalysis of singularities of generalized functions, with respect to these regularities. We present a complete study of this topic, including properties of the Fourier transform (exchange and regularity theorems) and relationship with classical theory, via suitable results of embeddings.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis