Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4623363 | Journal of Mathematical Analysis and Applications | 2007 | 17 Pages |
It is well known that the mathematical models provide very important information for the research of human immunodeficiency virus-type 1 and hepatitis C virus (HCV). However, the infection rate of almost all mathematical models is linear. The linearity shows the simple interaction between the T cells and the viral particles. In this paper, we consider the classical mathematical model with saturation response of the infection rate. By stability analysis we obtain sufficient conditions on the parameters for the global stability of the infected steady state and the infection-free steady state. We also obtain the conditions for the existence of an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the results.