Article ID Journal Published Year Pages File Type
4623438 Journal of Mathematical Analysis and Applications 2006 10 Pages PDF
Abstract

We study the smoothness property of a function f with absolutely convergent Fourier series, and give best possible sufficient conditions in terms of its Fourier coefficients to ensure that f belongs either to one of the Lipschitz classes Lip(α) and lip(α) for some 0<α⩽1, or to one of the Zygmund classes Λ∗(1) and λ∗(1). Our theorems generalize some of those by Boas [R.P. Boas Jr., Fourier series with positive coefficients, J. Math. Anal. Appl. 17 (1967) 463–483] and one by Németh [J. Németh, Fourier series with positive coefficients and generalized Lipschitz classes, Acta Sci. Math. (Szeged) 54 (1990) 291–304]. We also prove a localized version of a theorem by Paley [R.E.A.C. Paley, On Fourier series with positive coefficients, J. London Math. Soc. 7 (1932) 205–208] on the existence and continuity of the derivative of f.

Related Topics
Physical Sciences and Engineering Mathematics Analysis