Article ID Journal Published Year Pages File Type
4623521 Journal of Mathematical Analysis and Applications 2007 11 Pages PDF
Abstract

If X is a Banach space and C⊂X∗∗ a convex subset, for x∗∗∈X∗∗ and A⊂X∗∗ let be the distance from x∗∗ to C and . In this paper we prove that if φ is an Orlicz function, I an infinite set and X=ℓφ(I) the corresponding Orlicz space, equipped with either the Luxemburg or the Orlicz norm, then for every w∗-compact subset K⊂X∗∗ we have if and only if φ satisfies the Δ2-condition at 0. We also prove that for every Banach space X, every nonempty convex subset C⊂X and every w∗-compact subset K⊂X∗∗ then and, if K∩C is w∗-dense in K, then .

Related Topics
Physical Sciences and Engineering Mathematics Analysis