Article ID Journal Published Year Pages File Type
4623568 Journal of Mathematical Analysis and Applications 2006 12 Pages PDF
Abstract

The purpose of this paper is to study the existence of fixed points for nonexpansive multivalued mappings in a particular class of Banach spaces. Furthermore, we demonstrate a relationship between the weakly convergent sequence coefficient WCS(X) and the Jordan–von Neumann constant CNJ(X) of a Banach space X. Using this fact, we prove that if CNJ(X) is less than an appropriate positive number, then every multivalued nonexpansive mapping has a fixed point where E is a nonempty weakly compact convex subset of a Banach space X, and KC(E) is the class of all nonempty compact convex subsets of E.

Related Topics
Physical Sciences and Engineering Mathematics Analysis