Article ID Journal Published Year Pages File Type
4623587 Journal of Mathematical Analysis and Applications 2006 24 Pages PDF
Abstract

This paper is concerned with a model which describes the interaction of sound and elastic waves in a structural acoustic chamber in which one “wall” is flexible and flat. The model is new in the sense that the composite dynamics of the three-dimensional structure is described by the linearized equations for a gas defined on the interior of the chamber and the Reissner–Mindlin plate equations on the two-dimensional flat wall of the chamber, while, if a two-dimensional acoustic chamber is considered, the Timoshenko beam equations describe the deflections of the one-dimensional “wall.” With a view to achieving uniform stabilization of the structure linear feedback boundary damping is incorporated in the model, viz. in the wave equation for the gas and in the system of equations for the vibrations of the elastic medium. We present the uniform stability result for the case of a two-dimensional chamber and outline the method for the three-dimensional model which shows strong resemblance with the system of dynamic plane elasticity.

Related Topics
Physical Sciences and Engineering Mathematics Analysis