Article ID Journal Published Year Pages File Type
4623638 Journal of Mathematical Analysis and Applications 2007 16 Pages PDF
Abstract

Let T be a surjective map from a unital semi-simple commutative Banach algebra A onto a unital commutative Banach algebra B. Suppose that T preserves the unit element and the spectrum σ(fg) of the product of any two elements f and g in A coincides with the spectrum σ(TfTg). Then B is semi-simple and T is an isomorphism. The condition that T is surjective is essential: An example of a non-linear and non-multiplicative unital map from a commutative C*-algebra into itself such that σ(TfTg)=σ(fg) holds for every f,g are given. We also show an example of a surjective unital map from a commutative C*-algebra onto itself which is neither linear nor multiplicative such that σ(TfTg)⊂σ(fg) holds for every f,g.

Related Topics
Physical Sciences and Engineering Mathematics Analysis