Article ID Journal Published Year Pages File Type
4623726 Journal of Mathematical Analysis and Applications 2006 15 Pages PDF
Abstract

This paper is concerned with the existence and nonexistence of positive solutions of the second-order nonlinear dynamic equation uΔΔ(t)+λa(t)f(u(σ(t)))=0, t∈[0,1], satisfying either the conjugate boundary conditions u(0)=u(σ(1))=0 or the right focal boundary conditions u(0)=uΔ(σ(1))=0, where a and f are positive. We show that there exists a λ∗>0 such that the above boundary value problem has at least two, one and no positive solutions for 0<λ<λ∗, λ=λ∗ and λ>λ∗, respectively. Furthermore, by using the semiorder method on cones of the Banach space, we establish an existence and uniqueness criterion for positive solution of the problem. In particular, such a positive solution uλ(t) of the problem depends continuously on the parameter λ, i.e., uλ(t) is nondecreasing in λ, limλ→0+‖uλ‖=0 and limλ→+∞‖uλ‖=+∞.

Related Topics
Physical Sciences and Engineering Mathematics Analysis