Article ID Journal Published Year Pages File Type
4623733 Journal of Mathematical Analysis and Applications 2006 25 Pages PDF
Abstract

In this paper, we consider the boundary stabilization of a flexible beam attached to the center of a rigid disk. The disk rotates with a non-uniform angular velocity while the beam has non-homogeneous spatial coefficients. To stabilize the system, we propose a feedback law which consists of a control torque applied on the disk and either a dynamic boundary control moment or a dynamic boundary control force or both of them applied at the free end of the beam. By the frequency multiplier method, we show that no matter how non-homogeneous the beam is, and no matter how the angular velocity is varying but not exceeding a certain bound, the nonlinear closed loop system is always exponential stable. Furthermore, by the spectral analysis method, it is shown that the closed loop system with uniform angular velocity has a sequence of generalized eigenfunctions, which form a Riesz basis for the state space, and hence the spectrum-determined growth condition as well as the optimal decay rate are obtained.

Related Topics
Physical Sciences and Engineering Mathematics Analysis