Article ID Journal Published Year Pages File Type
4623908 Journal of Mathematical Analysis and Applications 2006 19 Pages PDF
Abstract

Let hm,p(z), (m,p)∈Z+×Z+, be the Landau orthogonal basis of the Hilbert space on where λ(z) is the usual Lebesgue measure on the complex plane. In this paper we give some spectral properties of the Cauchy transform on the orthogonal complement of Bargmann space Λ0(C) in . In particular for m fixed, we consider the orthogonal projection operator on the Hilbert subspace spanned by hm,p(z), , and we give explicitly the sequence of singular values of its composition with the Cauchy transform in . As application of these of the Cauchy transform we get some identities for special functions which could be of independent interest.

Related Topics
Physical Sciences and Engineering Mathematics Analysis