Article ID Journal Published Year Pages File Type
4623914 Journal of Mathematical Analysis and Applications 2006 14 Pages PDF
Abstract

In this paper, the problems of stochastic stability and robust control for a class of uncertain sampled-data systems are studied. The systems consist of random jumping parameters described by finite-state semi-Markov process. Sufficient conditions for stochastic stability or exponential mean square stability of the systems are presented. The conditions for the existence of a sampled-data feedback control and a multirate sampled-data optimal control for the continuous-time uncertain Markovian jump systems are also obtained. The design procedure for robust multirate sampled-data control is formulated as linear matrix inequalities (LMIs), which can be solved efficiently by available software toolboxes. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed techniques.

Related Topics
Physical Sciences and Engineering Mathematics Analysis