Article ID Journal Published Year Pages File Type
4623939 Journal of Mathematical Analysis and Applications 2006 14 Pages PDF
Abstract

We consider rotation invariant windowed Radon transforms that integrate a function over hyperplanes by using a radial weight (called window). T. Quinto proved their injectivity for square integrable functions of compact support. This cannot be extended in general. Actually, when the Laplace transform of the window has a zero with positive real part δ, the windowed Radon transform is not injective on functions with a Gaussian decay at infinity, depending on δ. Nevertheless, we give conditions on the window that imply injectivity of the windowed Radon transform on functions with a more rapid decay than any Gaussian function.

Related Topics
Physical Sciences and Engineering Mathematics Analysis