Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4623945 | Journal of Mathematical Analysis and Applications | 2006 | 13 Pages |
Abstract
In this paper, we consider a model described the survival of red blood cells in animal. Its dynamics are studied in terms of local and global Hopf bifurcations. We show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay crosses some critical values. Using the reduced system on the center manifold, we also obtain that the periodic orbits bifurcating from the positive equilibrium are stable in the center manifold, and all Hopf bifurcations are supercritical. Further, particular attention is focused on the continuation of local Hopf bifurcation. We show that global Hopf bifurcations exist after the second critical value of time delay.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis