Article ID Journal Published Year Pages File Type
4623954 Journal of Mathematical Analysis and Applications 2006 22 Pages PDF
Abstract

Let (Ω,Σ,μ) be a complete probability space and an absolutely summing operator between Banach spaces. We prove that for each Dunford integrable (i.e., scalarly integrable) function the composition u○f is scalarly equivalent to a Bochner integrable function. Such a composition is shown to be Bochner integrable in several cases, for instance, when f is properly measurable, Birkhoff integrable or McShane integrable, as well as when X is a subspace of an Asplund generated space or a subspace of a weakly Lindelöf space of the form C(K). We also study the continuity of the composition operator f↦u○f. Some other applications are given.

Related Topics
Physical Sciences and Engineering Mathematics Analysis