Article ID Journal Published Year Pages File Type
4623998 Journal of Mathematical Analysis and Applications 2006 11 Pages PDF
Abstract

In this paper, we introduce the concept of τ-function which generalizes the concept of w-distance studied in the literature. We establish a generalized Ekeland's variational principle in the setting of lower semicontinuous from above and τ-functions. As applications of our Ekeland's variational principle, we derive generalized Caristi's (common) fixed point theorems, a generalized Takahashi's nonconvex minimization theorem, a nonconvex minimax theorem, a nonconvex equilibrium theorem and a generalized flower petal theorem for lower semicontinuous from above functions or lower semicontinuous functions in the complete metric spaces. We also prove that these theorems also imply our Ekeland's variational principle.

Related Topics
Physical Sciences and Engineering Mathematics Analysis