Article ID Journal Published Year Pages File Type
4624044 Journal of Mathematical Analysis and Applications 2006 18 Pages PDF
Abstract

In this paper we provide a duality theory for multiobjective optimization problems with convex objective functions and finitely many D.C. constraints. In order to do this, we study first the duality for a scalar convex optimization problem with inequality constraints defined by extended real-valued convex functions. For a family of multiobjective problems associated to the initial one we determine then, by means of the scalar duality results, their multiobjective dual problems. Finally, we consider as a special case the duality for the convex multiobjective optimization problem with convex constraints.

Related Topics
Physical Sciences and Engineering Mathematics Analysis