Article ID Journal Published Year Pages File Type
4624053 Journal of Mathematical Analysis and Applications 2006 10 Pages PDF
Abstract

Let f∈W1,1(Ω,Rn) be a homeomorphism of finite distortion K. It is known that if K1/(n−1)∈L1(Ω), then the Jacobian Jf of f is positive almost everywhere in Ω. We will show that this integrability assumption on K is sharp in any Orlicz-scale: if α is increasing function (satisfying minor technical assumptions) such that limt→∞α(t)=∞, then there exists f such that K1/(n−1)/α(K)∈L1(Ω) and Jf vanishes in a set of positive measure.

Related Topics
Physical Sciences and Engineering Mathematics Analysis