Article ID Journal Published Year Pages File Type
4624227 Journal of Mathematical Analysis and Applications 2006 13 Pages PDF
Abstract

In their monograph, Bezhaev and Vasilenko have characterized the “mixed interpolating–smoothing spline” in the abstract setting of a Hilbert space. In this paper, we derive a similar characterization under slightly more general conditions. This is specialized to the finite-dimensional case, and applied to a few well-known problems, including the ν-spline (a piecewise polynomial spline in tension) and near-interpolation, as well as interpolation and smoothing. In particular, one of the main objectives in this paper is to show that the ν-spline is actually a mixed spline, an observation that we believe was not known prior to this work. We also show that the ν-spline is a limiting case of smoothing splines as certain weights increase to infinity, and a limiting case of near-interpolants as certain tolerances decrease to zero. We conclude with an iteration used to construct curvature-bounded ν-spline curves.

Related Topics
Physical Sciences and Engineering Mathematics Analysis