Article ID Journal Published Year Pages File Type
4624245 Journal of Mathematical Analysis and Applications 2006 25 Pages PDF
Abstract

In this paper we study the persistence of lower dimensional hyperbolic invariant tori for generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, systems under consideration can be odd-dimensional. Under Rüssmann-type non-degenerate condition, by introducing a modified linear KAM iterative scheme, we proved that the majority of the lower-dimensional hyperbolic invariant tori persist under small perturbations for generalized Hamiltonian systems.

Related Topics
Physical Sciences and Engineering Mathematics Analysis