Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4624254 | Journal of Mathematical Analysis and Applications | 2006 | 11 Pages |
Abstract
Let X,Y be linear spaces. It is shown that if a mapping Q:XâY satisfies the following functional equation:(0.1)Q((âi=1nzi)â(âi=1nxi))+Q((âi=1nzi)â(âi=1nyi))=12Q((âi=1nxi)â(âi=1nyi))+2Q((âi=1nzi)â(âi=1nxi)+(âi=1nyi)2) then the mapping Q:XâY is quadratic. We moreover prove the Hyers-Ulam stability of the functional equation (0.1) in Banach spaces.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Chun-Gil Park, Themistocles M. Rassias,