Article ID Journal Published Year Pages File Type
4624256 Journal of Mathematical Analysis and Applications 2006 10 Pages PDF
Abstract

An initial boundary value problem is considered for a nonlinear diffusion equation, the diffusivity being a function of the dependent variable. Dirichlet boundary conditions, independent of time, are considered and positive solutions are assumed. This paper is mainly concerned with the rate of convergence, in time, of the unsteady to the steady state. This is done by obtaining an upper estimate for a positive-definite, integral measure of the perturbation (i.e., unsteady–steady state) using differential inequality techniques.A previous result is recalled where the diffusivity k(τ)=τn (n being a positive constant) appropriate to mass transport, or filtration, in a porous medium. The present paper treats an alternative model, sharing some of the characteristics of the previous one: k(τ)=eτ−1, τ being non-negative.The paper concludes by considering a “backwards in time” initial boundary value problem for the perturbation (amenable to the same techniques) and establishes that the solution ceases to exist beyond a critical, computable time.

Related Topics
Physical Sciences and Engineering Mathematics Analysis