Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4624377 | Journal of Mathematical Analysis and Applications | 2006 | 15 Pages |
We prove the inverse closedness of certain approximation algebras based on a quasi-Banach algebra X using two general theorems on the inverse closedness of subspaces of quasi-Banach algebras. In the first theorem commutative algebras are considered while the second theorem can be applied to arbitrary X and to subspaces of X which can be obtained by a general K-method of interpolation between X and an inversely closed subspace Y of X having certain properties. As application we present some inversely closed subalgebras of C(T) and C[−1,1]. In particular, we generalize Wiener's theorem, i.e., we show that for many subalgebras S of l1(Z), the property {ck(f)}∈S (ck(f) being the Fourier coefficients of f) implies the same property for 1/f if f∈C(T) vanishes nowhere on T.