Article ID Journal Published Year Pages File Type
4624390 Journal of Mathematical Analysis and Applications 2006 14 Pages PDF
Abstract

It is shown in this paper that the Cauchy problem of the Boltzmann equation, with a cut-off soft potential and an initial datum close to a travelling Maxwellian, has a unique positive eternal solution. This eternal solution is exponentially decreasing at infinity for all t∈(−∞,∞), consequently the moments of any order are finite. This result gives a negative answer to the conjecture of Villani in the spatially inhomogeneous case.

Related Topics
Physical Sciences and Engineering Mathematics Analysis