Article ID Journal Published Year Pages File Type
4624517 Advances in Applied Mathematics 2016 18 Pages PDF
Abstract

A tanglegram consists of two binary rooted trees with the same number of leaves and a perfect matching between the leaves of the trees. We show that the two halves of a random tanglegram essentially look like two independently chosen random plane binary trees. This fact is used to derive a number of results on the shape of random tanglegrams, including theorems on the number of cherries and generally occurrences of subtrees, the root branches, the number of automorphisms, and the height. For each of these, we obtain limiting probabilities or distributions. Finally, we investigate the number of matched cherries, for which the limiting distribution is identified as well.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,