Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4624695 | Advances in Applied Mathematics | 2013 | 14 Pages |
Abstract
Using a quantum field theory renormalization group-like differential equation, we give a new proof of the recipe theorem for the Tutte polynomial for matroids. The solution of such an equation is in fact given by some appropriate characters of the Hopf algebra of isomorphic classes of matroids, characters which are then related to the Tutte polynomial for matroids. This Hopf algebraic approach also allows to prove, in a new way, a matroid Tutte polynomial convolution formula appearing in [W. Kook, V. Reiner, D. Stanton, A convolution formula for the Tutte polynomial, J. Combin. Theory Ser. B 76 (1999) 297–300] and [G. Etienne, M. Las Vergnas, External and internal elements of a matroid basis, Discrete Math. 179 (1998) 111–119].
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics