Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4624760 | Advances in Applied Mathematics | 2013 | 51 Pages |
Abstract
We describe a method for constructing characters of combinatorial Hopf algebras by means of integrals over certain polyhedral cones. This is based on ideas from resurgence theory, in particular on the construction of well-behaved averages induced by diffusion processes on the real line. We give several interpretations and proofs of the main result in terms of noncommutative symmetric and quasi-symmetric functions, as well as generalizations involving matrix quasi-symmetric functions. The interpretation of noncommutative symmetric functions as alien operators in resurgence theory is also discussed, and a new family of Lie idempotents of descent algebras is derived from this interpretation.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics