Article ID Journal Published Year Pages File Type
4624834 Advances in Applied Mathematics 2013 6 Pages PDF
Abstract

This paper studies a class of binomial ideals associated to graphs with finite vertex sets. They generalize the binomial edge ideals, and they arise in the study of conditional independence ideals. A Gröbner basis can be computed by studying paths in the graph. Since these Gröbner bases are square-free, generalized binomial edge ideals are radical. To find the primary decomposition a combinatorial problem involving the connected components of subgraphs has to be solved. The irreducible components of the solution variety are all rational.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics