Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4624952 | Advances in Applied Mathematics | 2011 | 26 Pages |
Abstract
We give an explicit combinatorial product formula for the parabolic Kazhdan–Lusztig polynomials of the tight quotients of the symmetric group. This formula shows that these polynomials are always either zero or a monic power of q and implies the main result in [F. Brenti, Kazhdan–Lusztig and R-polynomials, Youngʼs lattice, and Dyck partitions, Pacific J. Math. 207 (2002) 257–286] on the parabolic Kazhdan–Lusztig polynomials of the maximal quotients. The formula depends on a new class of superpartitions.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics