Article ID Journal Published Year Pages File Type
4624975 Advances in Applied Mathematics 2012 24 Pages PDF
Abstract

For a 2-connected matroid M, Cunningham and Edmonds gave a tree decomposition that displays all of its 2-separations. When M is 3-connected, two 3-separations are equivalent if one can be obtained from the other by passing through a sequence of 3-separations each of which is obtained from its predecessor by moving a single element from one side of the 3-separation to the other. Oxley, Semple, and Whittle gave a tree decomposition that displays, up to this equivalence, all non-trivial 3-separations of M. Now let M be 4-connected. In this paper, we define two 4-separations of M to be 2-equivalent if one can be obtained from the other by passing through a sequence of 4-separations each obtained from its predecessor by moving at most two elements from one side of the 4-separation to the other. The main result of the paper proves that M has a tree decomposition that displays, up to 2-equivalence, all non-trivial 4-separations of M.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics