Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4625034 | Advances in Applied Mathematics | 2008 | 20 Pages |
Abstract
We introduce the Cauchy augmentation operator for basic hypergeometric series. Heine's transformation formula and Sears' transformation formula can be easily obtained by the symmetric property of some parameters in operator identities. The Cauchy operator involves two parameters, and it can be considered as a generalization of the operator T(bDq). Using this operator, we obtain extensions of the Askey–Wilson integral, the Askey–Roy integral, Sears' two-term summation formula, as well as the q-analogs of Barnes' lemmas. Finally, we find that the Cauchy operator is also suitable for the study of the bivariate Rogers–Szegö polynomials, or the continuous big q-Hermite polynomials.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics