Article ID Journal Published Year Pages File Type
4625202 Advances in Applied Mathematics 2008 17 Pages PDF
Abstract

Oxley, Semple and Whittle described a tree decomposition for a 3-connected matroid M that displays, up to a natural equivalence, all non-trivial 3-separations of M. Crossing 3-separations gave rise to fundamental structures known as flowers. In this paper, we define a generalized flower structure called a k-flower, with no assumptions on the connectivity of M. We completely classify k-flowers in terms of the local connectivity between pairs of petals.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics