Article ID Journal Published Year Pages File Type
4625239 Advances in Applied Mathematics 2008 19 Pages PDF
Abstract

In this paper we consider a restricted class of polyominoes that we call Z-convex polyominoes. Z-convex polyominoes are polyominoes such that any two pairs of cells can be connected by a monotone path making at most two turns (like the letter Z). This class of convex polyominoes appears to resist standard decompositions, so we propose a construction by “inflation” that allows to write a system of functional equations for their generating functions. The generating function P(t) of Z-convex polyominoes with respect to the semi-perimeter turns out to be algebraic all the same and surprisingly, like the generating function of convex polyominoes, it can be expressed as a rational function of t and the generating function of Catalan numbers.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics