Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4625350 | Advances in Applied Mathematics | 2006 | 24 Pages |
A planar map is a 2-cell embedding of a connected planar graph, loops and parallel edges allowed, on the sphere. A plane map is a planar map with a distinguished outside (“infinite”) face. An unrooted map is an equivalence class of maps under orientation-preserving homeomorphism, and a rooted map is a map with a distinguished oriented edge. Previously we obtained formulae for the number of unrooted planar n-edge maps of various classes, including all maps, non-separable maps, eulerian maps and loopless maps. In this article, using the same technique we obtain closed formulae for counting unrooted plane maps of all these classes and their duals. The corresponding formulae for rooted maps are known to be all sum-free; the formulae that we obtain for unrooted maps contain only a sum over the divisors of n. We count also unrooted two-vertex plane maps.