Article ID Journal Published Year Pages File Type
4625350 Advances in Applied Mathematics 2006 24 Pages PDF
Abstract

A planar map is a 2-cell embedding of a connected planar graph, loops and parallel edges allowed, on the sphere. A plane map is a planar map with a distinguished outside (“infinite”) face. An unrooted map is an equivalence class of maps under orientation-preserving homeomorphism, and a rooted map is a map with a distinguished oriented edge. Previously we obtained formulae for the number of unrooted planar n-edge maps of various classes, including all maps, non-separable maps, eulerian maps and loopless maps. In this article, using the same technique we obtain closed formulae for counting unrooted plane maps of all these classes and their duals. The corresponding formulae for rooted maps are known to be all sum-free; the formulae that we obtain for unrooted maps contain only a sum over the divisors of n. We count also unrooted two-vertex plane maps.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics