Article ID Journal Published Year Pages File Type
4625559 Applied Mathematics and Computation 2017 15 Pages PDF
Abstract

The current study aims to approximate the solution of fractional differential equations (FDEs) by using the fundamental properties of artificial neural networks (ANNs) for function approximation. In the first step, we derive an approximate solution of fractional differential equation (FDE) by using ANNs. In the second step, an optimization approach is exploited to adjust the weights of ANNs such that the approximated solution satisfies the FDE. Different types of FDEs including linear and nonlinear terms are solved to illustrate the ability of the method. In addition, the present scheme is compared with the analytical solution and a number of existing numerical techniques to show the efficiency of ANNs with high accuracy, fast convergence and low use of memory for solving the FDEs.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , , ,