Article ID Journal Published Year Pages File Type
4625735 Applied Mathematics and Computation 2016 13 Pages PDF
Abstract

The main aim of the paper is to prove that the implicit numerical approximation can converge to the true solution to highly nonlinear hybrid stochastic pantograph differential equation. After providing the boundedness of the exact solution, the paper proves that the backward Euler–Maruyama numerical method can preserve boundedness of moments, and the numerical approximation converges strongly to the true solution. Finally, the exponential stability criterion on the backward Euler–Maruyama scheme is given, and a high order example is provided to illustrate the main result.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,