Article ID Journal Published Year Pages File Type
4626072 Applied Mathematics and Computation 2016 18 Pages PDF
Abstract

We propose a method for approximating probability density functions related to multidimensional jump diffusion processes. For small-time horizons, a closed-form approximation of the characteristic function is derived based on the Itô–Taylor expansion. The probability density function is then approximated numerically by inverting the characteristic function using fast Fourier transform. As application we consider a general stochastic volatility model, which involves time-/state-dependent drift and diffusion functions as well as jump components. We test our approach under the Heston model and the Bates model and show that our method provides accurate approximations.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,