Article ID Journal Published Year Pages File Type
4626225 Applied Mathematics and Computation 2015 15 Pages PDF
Abstract

In this paper we develop the theory of strongly continuous semigroups (C0-semigroups) of bounded linear operators from a Banach space X into itself. Many properties of a C0-semigroup {T(t):t∈T}{T(t):t∈T} and its generator A   are established. Here T⊆R≥0T⊆R≥0 is a time scale endowed with an additive semigroup structure. We also establish necessary and sufficient conditions for the dynamic initial value problem {xΔ(t)=Ax(t),t∈Tx(0)=x0∈D(A),0∈Tto have a unique solution, where D(A) is the domain of A. Finally, we unify the continuous Hille–Yosida–Phillips Theorem and the discrete Gibson Theorem.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,