Article ID Journal Published Year Pages File Type
4626367 Applied Mathematics and Computation 2015 8 Pages PDF
Abstract

An efficient method for finding all real roots of a univariate function in a given bounded domain is formulated. The proposed method uses adaptive mesh refinement to locate bracketing intervals based on bisection criterion for root finding. Each bracketing interval encloses one root. An adaptive form of error is introduced to enclose roots in a desired tolerance based on how close the roots are. Detecting roots with even multiplicity, which is regarded as beyond the realm of bracketing methods, becomes possible with the method proposed in this paper. Also, strategies for finding odd-multiple roots with the least number of function evaluations are proposed. Adaptive mesh refinement lead to considerable reduction in function evaluations in comparison to previous global root bracketing methods. The reliability of the proposed method is illustrated by several examples.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,