Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4626802 | Applied Mathematics and Computation | 2015 | 11 Pages |
Abstract
We introduce a special type of dissipative Ermakov-Pinney equations of the form vζζ+g(v)vζ+h(v)=0, where h(v)=h0(v)+cv-3 and the nonlinear dissipation g(v) is based on the corresponding Chiellini integrable Abel equation. When h0(v) is a linear function, h0(v)=λ2v, general solutions are obtained following the Abel equation route. Based on particular solutions, we also provide general solutions containing a factor with the phase of the Milne type. In addition, the same kinds of general solutions are constructed for the cases of higher-order Reid nonlinearities. The Chiellini dissipative function is actually a dissipation-gain function because it can be negative on some intervals. We also examine the nonlinear case h0(v)=Ω02(v-v2) and show that it leads to an integrable hyperelliptic case.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Stefan C. Mancas, Haret C. Rosu,