Article ID Journal Published Year Pages File Type
4626883 Applied Mathematics and Computation 2015 16 Pages PDF
Abstract

In this work, the simulation and optimization of transport processes through gas and water supply networks is considered. Those networks mainly consist of pipes as well as other components like valves, tanks and compressor/pumping stations. These components are modeled via algebraic equations or ODEs while the flow of gas/water through pipelines is described by a hierarchy of models starting from a hyperbolic system of PDEs down to algebraic equations. We present a consistent modeling of the network and derive adjoint equations for the whole system including initial, coupling and boundary conditions. These equations are suitable to compute gradients for optimization tasks but can also be used to estimate the accuracy of models and the discretization with respect to a given cost functional. With these error estimators we present an algorithm that automatically steers the discretization and the models used to maintain a given accuracy. We show numerical experiments for the simulation algorithm as well as the applicability in an optimization framework.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,