Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4627173 | Applied Mathematics and Computation | 2015 | 12 Pages |
Abstract
In this paper, we first recall some results concerning the construction and the properties of quadratic B-splines over a refinement Î of a quadrangulation â of a planar domain introduced recently by Lamnii et al. Then we introduce the B-spline representation of Hermite interpolant, in the special space S21,0(Î), of any polynomial or any piecewise polynomial over refined quadrangulation Î of â. After that, we use this B-representation for constructing several superconvergent discrete quasi-interpolants. The new results that we present in this paper are an improvement and a generalization of those developed in the above cited paper.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
D. Sbibih, A. Serghini, A. Tijini,