Article ID Journal Published Year Pages File Type
4627620 Applied Mathematics and Computation 2014 14 Pages PDF
Abstract

We describe an algorithm to compute the Tutte polynomial of large fragments of Archimedean tilings by squares, triangles, hexagons and combinations thereof. Our algorithm improves a well known method for computing the Tutte polynomial of square lattices. We also address the problem of obtaining Tutte polynomial evaluations from the symbolic expressions generated by our algorithm, improving the best known lower bound for the asymptotics of the number of spanning forests, and the lower and upper bounds for the asymptotics of the number of acyclic orientations of the square lattice.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , , ,